M1.(a) force between two (point) charges is
proportional to product of charges inversely proportional to square of distance between the charges

Mention of force is essential, otherwise no marks.
Condone "proportional to charges".
Do not allow "square of radius" when radius is undefined.
Award full credit for equation with all terms defined.
(b) $\quad V$ is inversely proportional to $r[$ or $V \propto(-) 1 / r] \checkmark$ (V has negative values) because charge is negative [or because force is attractive on + charge placed near it or because electric potential is + for + charge and - for - charge] potential is defined to be zero at infinity \checkmark

Allow $V \times r=$ constant for $1^{\text {st }}$ mark.
(c) (i) $Q\left(=4 \pi \varepsilon_{0} r V\right)=4 \pi \varepsilon_{0} \times 0.125 \times 2000$

OR gradient $=Q / 4 \pi \varepsilon_{0}=2000 / 8$

$$
\begin{aligned}
& \text { (for example, using any pair of values from graph) } \\
& \quad=28(27.8)(\pm 1)(\mathrm{nC}) \\
& \text { (gives } Q=28(27.8) \pm 1(n C)
\end{aligned}
$$

(ii) at $r=0.20 \mathrm{~m} V=-1250 \mathrm{~V}$ and at $r=0.50 \mathrm{~m} V=-500 \mathrm{~V}$ so pd $\Delta V=-500-(-1250)=750(\mathrm{~V})$ work done $\Delta W(=Q \Delta V)=60 \times 10^{-9} \times 750$

$$
=4.5(0) \times 10^{-5}(\mathrm{~J})(45 \mu \mathrm{~J}) \checkmark
$$

(final answer could be between 3.9 and 5.1×10^{-5})
Allow tolerance of $\pm 50 \mathrm{~V}$ on graph readings.
[Alternative for $1^{\text {st }}$ mark:
$\Delta V=\frac{27.8 \times 10^{-9}}{4 \pi \varepsilon_{0}} \times\left(\frac{1}{0.2}-\frac{1}{0.5}\right)$ (or similar substitution using 60
$n C$
instead of $27.8 n C$:
use of $60 n C$ gives $\Delta V=1620 \mathrm{~V}$)]
(iii)

$$
\begin{aligned}
& E\left(=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}\right)=\frac{27.8 \times 10^{-9}}{4 \pi \varepsilon_{0} \times 0.40^{2}} \quad \checkmark=1600(1560)\left(\mathrm{V} \mathrm{~m}^{-1}\right) \checkmark \\
& \text { [or deduce } E=\frac{\frac{Q}{r}}{\text { by combining } E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \quad \text { with } V=\frac{Q}{4 \pi \varepsilon_{0} r}} \\
& \text { from graph } E=\frac{625 \pm 50}{0.40}=1600(1560 \pm 130)\left(\mathrm{V} \mathrm{~m}^{-1}\right) \checkmark \text {] } \\
& \quad \text { Use of } Q=30 \text { nC gives } 1690\left(\mathrm{~V} \mathrm{~m}^{-1}\right) \text {. } \\
& \text { Allow ecf from } Q \text { value in (i). } \\
& \text { If } Q=60 n C \text { is used here, no marks to be awarded. }
\end{aligned}
$$

M2.D

M3.A

M4.B

M5.D

M6.(a) force between two (point) charges is proportional to (product of) charges $\quad \checkmark$ and inversely proportional to the square of their distance apart \checkmark

Formula not acceptable. Accept "charged particles" for charges. Accept separation for distance apart.
(b) (i) lines with arrows radiating outwards from each charge more lines associated with 6 nC charge than with 4 nC lines start radially and become non-radial with correct curvature further away from each charge \checkmark correct asymmetric pattern (with neutral pt closer to 4nC charge)

3 max
(ii) force $\left(=\frac{Q_{1} Q_{2}}{4 \pi \varepsilon_{0} r^{2}}\right)=\frac{4.0 \times 10^{-9} \times 6.0 \times 10^{-9}}{4 \pi \times 8.85 \times 10^{-12} \times\left(68 \times 10^{-3}\right)^{2}}$

$$
=4.6(7) \times 10^{-5}(\mathrm{~N})
$$

Treat substitution errors such as $10^{-6}\left(\right.$ instead of $\left.10^{-9}\right)$ as $A E$ with ECF available.
(c) (i) $\quad E_{4}=\frac{4.0 \times 10^{-9}}{4 \pi \varepsilon_{0} \times\left(34 \times 10^{-3}\right)^{2}}\left(=3.11 \times 10^{4} \mathrm{~V} \mathrm{~m}^{-1}\right)$ (to the right)

For both of ${ }^{\text {st }}$ two marks to be awarded, substitution for either or both of E_{4} or E_{6} (or a substitution in an expression for $E_{6}-E_{4}$) must be shown.
$E_{6}\left(=\frac{6.0 \times 10^{-9}}{4 \pi \varepsilon_{0} \times\left(34 \times 10^{-3}\right)^{2}}\right)=\left(4.67 \times 10^{4} \mathrm{~V} \mathrm{~m}^{-1}\right)$ (to the left)

If no substitution is shown, but evaluation is correct for E_{4} and E_{θ}, award one of $1^{\text {st }}$ two marks.
$E_{\text {resuluant }}=(4.67-3.11) \times 10^{4}=1.5(6) \times 10^{4}$
Unit: $\mathrm{V} \mathrm{m}^{-1}$ (or $\mathrm{N} \mathrm{C}^{-1}$)
Use of $r=68 \times 10^{-3}$ is a physics error with no ECF.
Unit mark is independent.
(ii) direction: towards 4 nC charge or to the left

M7. D

M8. $\quad \mathrm{C}$

M9. D

M10. D

M11. C

M12. A

M13. (a) (i) force per unit charge (1) acting on a positive charge (1)
(ii) vector (1)
(b) (i) $F\left(=\frac{Q_{1}}{4 \pi \varepsilon_{0} r^{2}}\right)=\frac{}{4 \pi \times 8.85 \times 10^{-12} \times\left(80 \times 10^{-3}\right)^{2}}$
$=4.5(0) \times 10^{-5} \mathrm{~N}(1)$
(ii) (use of $V=\frac{Q}{4 \pi \varepsilon_{0} x}$ gives) $0=\left(\frac{4.0 \times 10^{-9}}{4 \pi \varepsilon_{0} x}\right)-\left(\frac{8.0 \times 10^{-9}}{4 \pi \varepsilon_{0}\left(80 \times 10^{-3}-x\right.}\right)$
or $\frac{4}{x}=\frac{8}{80-x}$
$x=26.7 \mathrm{~mm}(1)$
(c) correct directions for E_{4} and E_{8} (1) E_{8} approx twice as long as $E_{4}(1)$ correct direction of resultant R shown (1)

M14. D

M15. D

M16. A

M17. D

